Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.607
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Molecules ; 29(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38611878

RESUMEN

Exosomes are multifunctional, cell-derived nanoscale membrane vesicles. Exosomes derived from certain mammalian cells have been developed as angiogenesis promoters for the treatment of myocardial ischemia-reperfusion injury, as they possess the capability to enhance endothelial cell proliferation, migration, and angiogenesis. However, the low yield of exosomes derived from mammalian cells limits their clinical applications. Therefore, we chose to extract exosome-like nanoparticles from the traditional Chinese medicine Salvia miltiorrhiza, which has been shown to promote angiogenesis. Salvia miltiorrhiza-derived exosome-like nanoparticles offer advantages, such as being economical, easily obtainable, and high-yielding, and have an ideal particle size, Zeta potential, exosome-like morphology, and stability. Salvia miltiorrhiza-derived exosome-like nanoparticles can enhance the cell viability of Human Umbilical Vein Endothelial Cells and can promote cell migration and improve the neovascularization of the cardiac tissues of myocardial ischemia-reperfusion injury, indicating their potential as angiogenesis promoters for the treatment of myocardial ischemia-reperfusion injury.


Asunto(s)
Exosomas , Daño por Reperfusión Miocárdica , Nanopartículas , Salvia miltiorrhiza , Humanos , Animales , Angiogénesis , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Células Endoteliales de la Vena Umbilical Humana , Factores de Transcripción , Mamíferos
2.
Int Wound J ; 21(4): e14867, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38597295

RESUMEN

Non-healing wounds are one of the chronic complications of diabetes and have remained a worldwide challenge as one of the major health problems. Hyperbaric oxygen (HBO) therapy is proven to be very successful for diabetic wound treatment, for which the molecular basis is not understood. Adipocytes regulate multiple aspects of repair and may be therapeutic for inflammatory diseases and defective wound healing associated with aging and diabetes. Endothelial cell-derived extracellular vesicles could promote wound healing in diabetes. To study the mechanism by which HBO promotes wound healing in diabetes, we investigated the effect of HBO on fat cells in diabetic mice. A diabetic wound mouse model was established and treated with HBO. Haematoxylin and eosin (H&E) staining and immunofluorescence were used for the analysis of wound healing. To further explore the mechanism, we performed whole-genome sequencing on extracellular vesicles (EVs). Furthermore, we conducted in vitro experiments. Specifically, exosomes were collected from human umbilical vein endothelial cell (HUVEC) cells after HBO treatment, and then these exosomes were co-incubated with adipose tissue. The wound healing rate in diabetic mice treated with HBO was significantly higher. HBO therapy promotes the proliferation of adipose precursor cells. HUVEC-derived exosomes treated with HBO significantly promoted fat cell browning. These data clarify that HBO therapy may promote vascular endothelial cell proliferation and migration, and promote browning of fat cells through vascular endothelial cells derived exosomes, thereby promoting diabetic wound healing. This provides new ideas for the application of HBO therapy in the treatment of diabetic trauma.


Asunto(s)
Diabetes Mellitus Experimental , Oxigenoterapia Hiperbárica , Humanos , Animales , Ratones , Cicatrización de Heridas/fisiología , Diabetes Mellitus Experimental/terapia , Células Endoteliales de la Vena Umbilical Humana , Tejido Adiposo Blanco
3.
Chin J Nat Med ; 22(4): 293-306, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658093

RESUMEN

Icariin, a flavonoid glycoside, is extracted from Epimedium. This study aimed to investigate the vascular protective effects of icariin in type 1 diabetic rats by inhibiting high-mobility group box 1 (HMGB1)-related inflammation and exploring its potential mechanisms. The impact of icariin on vascular dysfunction was assessed in streptozotocin (STZ)-induced diabetic rats through vascular reactivity studies. Western blotting and immunofluorescence assays were performed to measure the expressions of target proteins. The release of HMGB1 and pro-inflammation cytokines were measured by enzyme-linked immunosorbent assay (ELISA). The results revealed that icariin administration enhanced acetylcholine-induced vasodilation in the aortas of diabetic rats. It also notably reduced the release of pro-inflammatory cytokines, including interleukin-8 (IL-8), IL-6, IL-1ß, and tumor necrosis factor-alpha (TNF-α) in diabetic rats and high glucose (HG)-induced human umbilical vein endothelial cells (HUVECs). The results also unveiled that the pro-inflammatory cytokines in the culture medium of HUVECs could be increased by rHMGB1. The increased release of HMGB1 and upregulated expressions of HMGB1-related inflammatory factors, including advanced glycation end products (RAGE), Toll-like receptor 4 (TLR4), and phosphorylated p65 (p-p65) in diabetic rats and HG-induced HUVECs, were remarkably suppressed by icariin. Notably, HMGB1 translocation from the nucleus to the cytoplasm in HUVECs under HG was inhibited by icariin. Meanwhile, icariin could activate G protein-coupled estrogen receptor (GPER) and sirt1. To explore the role of GPER and Sirt1 in the inhibitory effect of icariin on HMGB1 release and HMGB-induced inflammation, GPER inhibitor and Sirt1 inhibitor were used in this study. These inhibitors diminished the effects of icariin on HMGB1 release and HMGB1-induced inflammation. Specifically, the GPER inhibitor also negated the activation of Sirt1 by icariin. These findings suggest that icariin activates GPER and increases the expression of Sirt1, which in turn reduces HMGB1 translocation and release, thereby improving vascular endothelial function in type 1 diabetic rats by inhibiting inflammation.


Asunto(s)
Diabetes Mellitus Experimental , Flavonoides , Proteína HMGB1 , Ratas Sprague-Dawley , Receptores de Cannabinoides , Receptores Acoplados a Proteínas G , Transducción de Señal , Sirtuina 1 , Animales , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Sirtuina 1/metabolismo , Sirtuina 1/genética , Flavonoides/farmacología , Transducción de Señal/efectos de los fármacos , Ratas , Masculino , Humanos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Citocinas/metabolismo , Epimedium/química
4.
Molecules ; 29(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542876

RESUMEN

Endothelial inflammation is a multifaceted physiological process that plays a pivotal role in the pathogenesis and progression of diverse diseases, encompassing but not limited to acute lung infections like COVID-19, coronary artery disease, stroke, sepsis, metabolic syndrome, certain malignancies, and even psychiatric disorders such as depression. This inflammatory response is characterized by augmented expression of adhesion molecules and secretion of pro-inflammatory cytokines. In this study, we discovered that saponins from Allium macrostemon bulbs (SAMB) effectively inhibited inflammation in human umbilical vein endothelial cells induced by the exogenous inflammatory mediator lipopolysaccharide or the endogenous inflammatory mediator tumor necrosis factor-α, as evidenced by a significant reduction in the expression of pro-inflammatory factors and vascular cell adhesion molecule-1 (VCAM-1) with decreased monocyte adhesion. By employing the NF-κB inhibitor BAY-117082, we demonstrated that the inhibitory effect of SAMB on VCAM-1 expression may be attributed to the NF-κB pathway's inactivation, as characterized by the suppressed IκBα degradation and NF-κB p65 phosphorylation. Subsequently, we employed a murine model of lipopolysaccharide-induced septic acute lung injury to substantiate the potential of SAMB in ameliorating endothelial inflammation and acute lung injury in vivo. These findings provide novel insight into potential preventive and therapeutic strategies for the clinical management of diseases associated with endothelial inflammation.


Asunto(s)
Lesión Pulmonar Aguda , Cebollino , Medicamentos Herbarios Chinos , Saponinas , Humanos , Animales , Ratones , FN-kappa B/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo , Saponinas/farmacología , Lipopolisacáridos/toxicidad , Inflamación/tratamiento farmacológico , Inflamación/prevención & control , Células Endoteliales de la Vena Umbilical Humana , Factor de Necrosis Tumoral alfa/farmacología , Lesión Pulmonar Aguda/tratamiento farmacológico , Mediadores de Inflamación/metabolismo
5.
Ecotoxicol Environ Saf ; 274: 116232, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38493701

RESUMEN

Fine particulate matter (PM2.5) exposure is strongly associated with vascular endothelial senescence, a process implicated in cardiovascular diseases. While there is existing knowledge on the impact of Lycium barbarum polysaccharide (LBP) on vascular endothelial damage, the protective mechanism of LBP against PM2.5-induced vascular endothelial senescence remains unclear. In this study, we investigated the impact of PM2.5 exposure on vascular endothelial senescence and explored the intervention effects of LBP in human umbilical vein endothelial cells (HUVECs). We found that PM2.5 exposure dose-dependently reduced cell viability and proliferation in HUVECs while increasing the production of reactive oxygen species (ROS), malondialdehyde (MDA), and hydrogen peroxide (H2O2). Additionally, PM2.5 exposure inhibited the activity of superoxide dismutase (SOD). Notably, PM2.5 exposure induced autophagy impairments and cellular senescence. However, LBP mitigated PM2.5-induced cell damage. Further studies demonstrated that correcting autophagy impairment in HUVECs reduced the expression of the senescence markers P16 and P21 induced by PM2.5. This suggests the regulatory role of autophagy in cellular senescence and the potential of LBP in improving HUVECs senescence. These findings provide novel insights into the mechanisms underlying PM2.5-induced cardiovascular toxicity and highlight the potential of LBP as a therapeutic agent for improving vascular endothelial health.


Asunto(s)
Medicamentos Herbarios Chinos , Peróxido de Hidrógeno , Lycium , Humanos , Células Endoteliales de la Vena Umbilical Humana , Peróxido de Hidrógeno/metabolismo , Material Particulado/metabolismo , Senescencia Celular
6.
J Tradit Chin Med ; 44(2): 268-276, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504533

RESUMEN

OBJECTIVE: To investigate the effects of emodin on alkali burn-induced corneal inflammation and neovascularization. METHODS: The ability of emodin to target vascular endothelial growth factor receptor 2 (VEGFR2) was predicted by molecular docking. The effects of emodin on the invasion, migration, and proliferation of human umbilical vein endothelial cells (HUVEC) were determined by cell counting kit-8, Transwell, and tube formation assays. Analysis of apoptosis was performed by flow cytometry. CD31 levels were examined by immunofluorescence. The abundance and phosphorylation state of VEGFR2, protein kinase B (Akt), signal transducer and activator of transcription 3 (STAT3), and P38 were examined by immunoblot analysis. Corneal alkali burn was performed on 40 mice. Animals were divided randomly into two groups, and the alkali-burned eyes were then treated with drops of either 10 µM emodin or phosphate buffered saline (PBS) four times a day. Slit-lamp microscopy was used to evaluate inflammation and corneal neovascularization (CNV) in all eyes on Days 0, 7, 10, and 14. The mice were killed humanely 14 d after the alkali burn, and their corneas were removed and preserved at -80 ℃ until histological study or protein extraction. RESULTS: Molecular docking confirmed that emodin was able to target VEGFR2. The findings revealed that emodin decreased the invasion, migration, angiogenesis, and proliferation of HUVEC in a dose-dependent manner. In mice, emodin suppressed corneal inflammatory cell infiltration and inhibited the development of corneal neovascularization induced by alkali burn. Compared to those of the PBS-treated group, lower VEGFR2 expression and CD31 levels were found in the emodin-treated group. Emodin dramatically decreased the expression of VEGFR2, p-VEGFR2, p-Akt, p-STAT3, and p-P38 in VEGF-treated HUVEC. CONCLUSION: This study provides a new avenue for evaluating the molecular mechanisms underlying corneal inflammation and neovascularization. Emodin might be a promising new therapeutic option for corneal alkali burns.


Asunto(s)
Quemaduras Químicas , Neovascularización de la Córnea , Emodina , Humanos , Ratones , Animales , Neovascularización de la Córnea/tratamiento farmacológico , Neovascularización de la Córnea/genética , Neovascularización de la Córnea/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Quemaduras Químicas/tratamiento farmacológico , Quemaduras Químicas/metabolismo , Quemaduras Químicas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Simulación del Acoplamiento Molecular , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/genética , Transducción de Señal , Células Endoteliales de la Vena Umbilical Humana , Inflamación/tratamiento farmacológico , Modelos Animales de Enfermedad
7.
Int J Mol Sci ; 25(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38474153

RESUMEN

Cell fate instability is a crucial characteristic of aging and appears to contribute to various age-related pathologies. Exploring the connection between bioactive substances and cell fate stability may offer valuable insights into longevity. Therefore, the objective of this study was to investigate the potential beneficial effects of ginseng oligopeptides (GOPs) isolated from Panax ginseng C. A. Meyer at the cellular level. Disruption of homeostasis of human umbilical vein endothelial cells (HUVECs) and PC-12 was achieved by culturing them in the growth medium supplemented with 200 µM of H2O2, and 25, 50, and 100 µg/mL GOPs for 4 h. Then, they were cultured in a H2O2-free growth medium containing different concentration of GOPs. We found that GOP administration retards the oxidative stress-induced cell instability in HUVECs by increasing cell viability, inhibiting the cell cycle arrest, enhancing telomerase (TE) activity, suppressing oxidative stress and an inflammatory attack, and protecting mitochondrial function. Furthermore, we hypothesized that GOPs may promote mitochondrial biosynthesis by upregulating PGC-1α expression. Similarly, GOPs positively regulated cell stability in PC-12; notably, the protective effect of GOPs on PC-12 mainly occurred through the inhibition of autophagic cell death of neuronal cells, while the protective effect on mitochondria was weak. In conclusion, it is evident that GOPs demonstrate potential beneficial effects in maintaining cell fate stability, thereby potentially contributing to an enhanced health span and overall well-being.


Asunto(s)
Antioxidantes , Panax , Humanos , Antioxidantes/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Panax/química , Peróxido de Hidrógeno/metabolismo , Extractos Vegetales/farmacología , Estrés Oxidativo , Oligopéptidos/farmacología
8.
Phytomedicine ; 128: 155557, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38547622

RESUMEN

BACKGROUND: In this study, we investigated the protective effects of alizarin (AZ) on endothelial dysfunction (ED). AZ has inhibition of the type 2 diabetes mellitus (T2DM)-induced synthesis of thrombospondin 1 (THBS1). Adenosine 5'-monophosphate- activated protein kinase (AMPK), particularly AMPKα2 isoform, plays a critical role in maintaining cardiac homeostasis. PURPOSE: The aim of this study was to investigate the ameliorative effect of AZ on vascular injury caused by T2DM and to reveal the potential mechanism of AZ in high glucose (HG)-stimulated human umbilical vein endothelial cells (HUVECs) and diabetic model rats. STUDY DESIGN: HUVECs, rats and AMPK-/- transgenic mice were used to investigate the mitigating effects of AZ on vascular endothelial dysfunction caused by T2DM and its in vitro and in vivo molecular mechanisms. METHODS: In type 2 diabetes mellitus rats and HUVECs, the inhibitory effect of alizarin on THBS1 synthesis was verified by immunohistochemistry (IHC), immunofluorescence (IF) and Western blot (WB) so that increase endothelial nitric oxide synthase (eNOS) content in vitro and in vivo. In addition, we verified protein interactions with immunoprecipitation (IP). To probe the mechanism, we also performed AMPKα2 transfection. AMPK's pivotal role in AZ-mediated prevention against T2DM-induced vascular endothelial dysfunction was tested using AMPKα2-/- mice. RESULTS: We first demonstrated that THBS1 and AMPK are targets of AZ. In T2DM, THBS1 was robustly induced by high glucose and inhibited by AZ. Furthermore, AZ activates the AMPK signaling pathway, and recoupled eNOS in stressed endothelial cells which plays a protective role in vascular endothelial dysfunction. CONCLUSIONS: The main finding of this study is that AZ can play a role in different pathways of vascular injury due to T2DM. Mechanistically, alizarin inhibits the increase in THBS1 protein synthesis after high glucose induction and activates AMPKα2, which increases NO release from eNOS, which is essential in the prevention of vascular endothelial dysfunction caused by T2DM.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Antraquinonas , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Endoteliales de la Vena Umbilical Humana , Óxido Nítrico Sintasa de Tipo III , Transducción de Señal , Trombospondina 1 , Animales , Humanos , Antraquinonas/farmacología , Transducción de Señal/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Trombospondina 1/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Masculino , Ratas , Ratones , Ratas Sprague-Dawley , Endotelio Vascular/efectos de los fármacos , Glucosa/metabolismo , Ratones Endogámicos C57BL
9.
Chem Biodivers ; 21(5): e202400300, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38430215

RESUMEN

Sea buckthorn, a traditional medicinal plant, has been used for several years in China for the prevention and treatment of various diseases, a practice closely associated with its significant antioxidant activity. The aim of this study was to investigate the protective effects of sea buckthorn flavonoids on vascular endothelial cells in an oxidative stress environment. We isolated and extracted active compounds from sea buckthorn and investigated their impact on endothelial nitric oxide synthase (eNOS) activity through the PI3K/AKT-eNOS signaling pathway through a combination of network pharmacology and cellular experiments, elucidating the regulatory effects of these compounds on endothelial cell functions. Three flavonoids, named Fr.4-2-1, Fr.4-2-2 and Fr.4-2-3, were obtained from sea buckthorn. The results of network pharmacology indicated that they might exert their effects by regulating the PI3K-AKT signaling pathway. In vitro results showed that all three flavonoids were effective in alleviating the degree of oxidative stress in cells, among which Fr.4-2-1 exerted its antioxidant effects by modulating the PI3K/AKT-eNOS pathway. Flavonoids in sea buckthorn can effectively inhibit oxidative stress-induced cellular damage, preserving the integrity and functionality of endothelial cells, which is crucial for maintaining vascular health and function.


Asunto(s)
Flavonoides , Hippophae , Óxido Nítrico Sintasa de Tipo III , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Hippophae/química , Óxido Nítrico Sintasa de Tipo III/metabolismo , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Flavonoides/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Supervivencia Celular/efectos de los fármacos , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Sustancias Protectoras/aislamiento & purificación
10.
J Ethnopharmacol ; 326: 117913, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38360380

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Kaempferia galanga Linn. is an aromatic medicinal herb with extensively applied in India, China, Malaysia and other South Asia countries for thousands of years. It has been mentioned to treat abdominal tumors. Ethyl cinnamate (EC), one of the main chemical constituents of the rhizome of K. galanga, exhibited nematocidal, sedative and vasorelaxant activities. However, its anti-angiogenic activity, and anti-tumor effect have not been investigated. AIM OF THE STUDY: To investigate the anti-angiogenic mechanism of EC and its anti-tumor effect by suppressing angiogenesis. MATERIALS AND METHODS: The in vitro anti-angiogenic effect was evaluated using HUVECs model induced by VEGF and zebrafish model in vivo. The influence of the EC on phosphorylation of VEGFR2 and its downstream signaling pathways were evaluated by western blotting assay. Molecule docking technology was conducted to explore the interaction between EC and VEGFR2. SPR assay was used for detecting the binding affinity between EC and VEGFR2. To further investigate the molecular mechanism of EC on anti-angiogenesis, VEGFR2 knockdown in HUVECs and examined the influence of the EC. Anti-tumor activity of EC was evaluated using colony formation assay and apoptosis assay. The inhibitory effect of EC on tumor growth was explored using HT29 colon cancer xenograft model. RESULTS: EC obviously inhibited proliferation, migration, invasion and tube formation of VEGF-induced HUVECs. EC also induced apoptosis of HUVECs. Moreover, it inhibited the development of vessel formation in zebrafish. Further investigations demonstrated that EC could suppress the phosphorylation of VEGFR2, and its downstream signaling pathways were altered in VEGF-induced HUVECs. EC formed a hydrogen bond to bind with the ATP binding site of the VEGFR2, and EC-VEGFR2 interaction was shown in SPR assay. The suppressive effect of EC on angiogenesis was abrogated after VEGFR2 knockdown in HUVECs. EC inhibited the colon cancer cells colony formation and induced apoptosis. In addition, EC suppressed tumor growth in colon cancer xenograft model, and no detectable hepatotoxicity and nephrotoxicity. In addition, it inhibited the phosphorylation of VEGFR2, and its downstream signal pathways in tumor. CONCLUSIONS: EC could inhibit tumor growth in colon cancer by suppressing angiogenesis via VEGFR2 signaling pathway, and suggested EC as a promising candidate for colon cancer treatment.


Asunto(s)
Cinamatos , Neoplasias del Colon , Neoplasias Colorrectales , Animales , Humanos , Pez Cebra , Células Endoteliales de la Vena Umbilical Humana , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proliferación Celular , Movimiento Celular , Transducción de Señal , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Neoplasias Colorrectales/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Neovascularización Patológica/metabolismo
11.
Phytother Res ; 38(3): 1478-1493, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38234096

RESUMEN

Hesperetin (HST) is a flavonoid compound naturally occurring in citrus fruits and is widespread in various traditional medicinal herbs such as grapefruit peel, orange peel, and tangerine peel. These plant materials are commonly used in traditional Chinese medicine to prepare herbal remedies. The study aimed to investigate the potential molecular mechanisms through which HST reduces ferroptosis in human umbilical vein endothelial cells (HUVECs) and promotes angiogenesis and wound healing. We employed network pharmacology to predict the downstream targets affected by HST. The expression of markers related to ferroptosis was assessed through Western blot (WB) and polymerase chain reaction. Intracellular levels of ferroptosis-related metabolism were examined using glutathione/oxidized glutathione (GSH/GSSG) and malondialdehyde (MDA) assay kits. Mitochondrial status and iron levels within the cells were investigated through staining with Mitosox, FerroOrange, and JC1 staining. Potential downstream direct targets of HST were identified using molecular docking. Additionally, wound healing and neovascularization within the wound site were analyzed using various methods including HE staining, Masson's staining, immunohistochemistry, and Doppler hemodynamics assessment. HST effectively inhibits the elevated levels of intracellular ferroptosis stimulated by ERASTIN. Furthermore, we observed that HST achieves this inhibition of ferroptosis by activating SIRT3. In a diabetic rat wound model, HST significantly promotes wound healing, reducing levels of tissue ferroptosis, consistent with our in vitro findings. This study demonstrates that HST can inhibit the progression of ferroptosis and protect the physiological function of HUVECs by activating SIRT3. HST holds promise as a natural compound for promoting diabetic wound healing.


Asunto(s)
Diabetes Mellitus , Ferroptosis , Hesperidina , Sirtuina 3 , Humanos , Animales , Ratas , Simulación del Acoplamiento Molecular , Glutatión , Células Endoteliales de la Vena Umbilical Humana
12.
Phytother Res ; 38(3): 1245-1261, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38185885

RESUMEN

Angiogenesis is a key player in the pathogenesis of rheumatoid arthritis. Exocytosis from Weibel-Palade bodies is a prerequisite for angiopoietin-2 (Ang-2) to activate endothelial cells and initiate angiogenesis. Geniposide (GE) was previously reported to exert anti-angiogenic effects. The aim of this study was to shed light on whether and how GE regulates Ang-2 exocytosis. A rat model of adjuvant arthritis (AA) was established to evaluate the therapeutic effect of GE (60 and 120 mg/kg) especially in synovial angiogenesis. In addition, the Matrigel plug assay was used to detect the effect of GE (120 and 240 mg/kg) on angiogenesis in AA mice. In vitro, sphingosine-1-phosphate (S1P)-stimulated human umbilical vein endothelial cells (HUVECs) were used to investigate the effect and mechanism of GE on Ang-2 exocytosis. It was found that GE improved the symptoms of AA rats and inhibited angiogenesis in AA, which may be related to the down-regulation of S1P receptors 1, 3 (S1PR1, S1PR3), phospholipase Cß3 (PLCß3), inositol 1,4,5-trisphosphate receptor (IP3 R) and Ang-2 expression. The results of in vitro experiments showed that S1P induced rapid release of Ang-2 from HUVECs with multigranular exocytosis. Suppression of the S1P/S1PR1/3/PLCß3/Ca2+ signal axis by the S1PR1/3 inhibitor VPC23019 and the IP3 R inhibitor 2-APB blocked Ang-2 exocytosis, accompanied by diminished angiogenesis in vitro. GE dose-dependently weakened S1P/S1PR1/3/PLCß3/Ca2+ signal axis activation, Ang-2 exocytosis and angiogenesis in HUVECs (p < 0.05, p < 0.01). Overall, these findings revealed that angiogenesis inhibition of GE was partly attributed to the intervention of Ang-2 exocytosis through negatively modulating the S1P/S1PR1/3/PLCß3/Ca2+ signal axis, providing a novel strategy for rheumatoid arthritis anti-angiogenic therapy.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Iridoides , Ratas , Humanos , Ratones , Animales , Angiopoyetina 2/farmacología , Angiogénesis , Células Endoteliales de la Vena Umbilical Humana , Exocitosis , Angiopoyetina 1/metabolismo
13.
J Ethnopharmacol ; 324: 117811, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38286156

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditionally, the roots of Kaempferia galanga has been used to treat high blood pressure, chest pain, headache, toothache, rheumatism, indigestion, cough, inflammation and cancer in Asia. Nevertheless, most of its pharmacological studies were focused on ethanolic extracts and volatile oils. The exact active chemical constituents and their underlying mechanisms are still poorly understood, especially towards its anti-cancer treatment. Inhibition of angiogenesis is an important atrategy to inhibit tumor growth. It has been reported that the low polar component of the plant possessed anti-angiogenic activity. Yet, the potent compound which is responsible for the effect and its molecular mechanism has not been reported. AIM OF THE STUDY: To determine the potent anti-angiogenic component in K.galanga and its mechanism of action. MATERIAL AND METHODS: The low polar components of the plant were concentrated using the methods of supercritical fluid extraction (SFE), subcritical extraction (SCE) and steam distillation (SD). The anti-angiogenic activity of the three extracts was evaluated using a zebrafish model. The content of the active compound in those extracts was determined with HPLC analysis. The in-vitro and in-vivo activity of the isolated compound was evaluated using human umbilical vein endothelial cells (HUVECs) model, the aortic ring assay and the matrigel plug assay, respectively. Its molecular mechanism was further studied by the western blotting assay and computer-docking experiments. Besides, its cytotoxicity on cancer and normal cell lines was evaluated using the cell-counting kit. RESULTS: HPLC results showed that trans-ethyl p-methoxycinnamate (TEM) was the major component of the extracts. The extract of SFE showed the best effect as it has the highest content of TEM. TEM could inhibit vascular endothelial growth factor (VEGF)-induced viability, migration, invasion and tube formation in human umbilical vein endothelial cells (HUVECs) in vitro. Moreover, it inhibited VEGF-induced sprout formation ex vivo and vessel formation in vivo. Mechanistic study showed that it could suppress tyrosine kinase activity of the receptor of VEGF (VEGFR2) and alter its downstream signaling pathways. In addition, the molecular docking showed that the binding of TEM and VEGFR2 is stable, which mainly attributed to the non-covalent binding interaction. Beside, TEM possessed little toxicity to both cancer and normal cells. CONCLUSION: TEM is the major anti-angiogenic component present in K. galanga and its anti-angiogenic property rather than toxicity provides scientific basis for the traditional use of K. galanga in cancer treatment.


Asunto(s)
Alpinia , Neoplasias , Zingiberaceae , Animales , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Pez Cebra , Simulación del Acoplamiento Molecular , Zingiberaceae/química , Células Endoteliales de la Vena Umbilical Humana , Neoplasias/metabolismo , Inhibidores de la Angiogénesis/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Movimiento Celular , Proliferación Celular , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
14.
J Ethnopharmacol ; 324: 117792, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38290612

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Guanxinning(GXN) tablet is a patented traditional Chinese medicine widely used to prevent and treat cardiovascular diseases. However, its potential mechanism and target in anti-diabetic atherosclerosis have not been clarified. AIM: The aim of this study was to investigate the underlying targets and mechanisms of action GXN in the treatment of diabetic atherosclerosis, employing a combination of network pharmacology, molecular docking, and in vitro experimental verification. METHODS: We predicted the core components and targets of GXN in the treatment of diabetic atherosclerosis through various databases, and made analysis and molecular docking. In vitro, we induced injury in human umbilical vein endothelial cells using glucose/palmitate and observed the effects of GXN on cellular damage high-glucose and high-fat conditions, subsequently elucidating its molecular mechanisms. RESULTS: A total of 14 active components and 157 targets of GXN were identified. Using the PPI network, we selected 9 core active components and 20 targets of GXN. GO functional analysis revealed that these targets were primarily associated with apoptosis signaling pathways in response to endoplasmic reticulum stress and reactive oxygen species responses. Molecular docking confirmed the strong binding affinities of the primary active components of GXN with ERN1, MAPK1 and BECN1. In vitro experiments demonstrated the ability of GXN to restore endothelial cell activity, enhance cell migration and inhibit sICAM secretion, and upregulate the expression of endoplasmic reticulum stress-related proteins (IRE1, XBP1) and autophagy-related proteins (Beclin1, LC3A, and LC3B), while simultaneously inhibiting endothelial cell apoptosis under high-glucose and high-fat conditions. CONCLUSIONS: Our findings suggest that GXN can potentially safeguard endothelial cells from the adverse effects of high-glucose and high-fat by modulating the interactions between endoplasmic reticulum stress and autophagy. Therefore, GXN is a promising candidate for the prevention and treatment of diabetic atherosclerosis.


Asunto(s)
Aterosclerosis , Diabetes Mellitus , Medicamentos Herbarios Chinos , Humanos , Simulación del Acoplamiento Molecular , Farmacología en Red , Aterosclerosis/tratamiento farmacológico , Glucosa , Células Endoteliales de la Vena Umbilical Humana , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico
15.
Molecules ; 29(2)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38257211

RESUMEN

Suaeda glauca, a halophyte in the Amaranthaceae family, exhibits remarkable resilience to high salt and alkali stresses despite the absence of salt glands or vesicles in its leaves. While there is growing pharmacological interest in S. glauca, research on its secondary metabolites remains limited. In this study, chemical constituents of the aerial parts of S. glauca were identified using 1D- and 2D-NMR experiments, and its biological activity concerning hair loss was newly reported. Eight compounds, including alkaloids (1~3), flavonoids (4~6), and phenolics (7 and 8), were isolated. The compounds, except the flavonoids, were isolated for the first time from S. glauca. In the HPLC chromatogram, quercetin-3-O-ß-d-glucoside, kaempferol-3-O-ß-d-glucoside, and kaempferol were identified as major constituents in the extract of S. glauca. Additionally, the therapeutic potential of the extract of S. glauca and the isolated compounds 1~8 on the expressions of VEGF and IGF-1, as well as the regulation of Wnt/ß-catenin signaling, were evaluated in human follicle dermal papilla cells (HFDPCs) and human umbilical vein endothelial cells (HUVECs). Among the eight compounds, compound 4 was the most potent in terms of increasing the expression of VEGF and IGF-1 and the regulation of Wnt/ß-catenin. These findings suggest that S. glauca extract and its compounds are potential new candidates for preventing or treating hair loss.


Asunto(s)
Chenopodiaceae , Factor I del Crecimiento Similar a la Insulina , Humanos , Animales , Plantas Tolerantes a la Sal , beta Catenina , Factor A de Crecimiento Endotelial Vascular , Alopecia , Flavonoides/farmacología , Células Endoteliales de la Vena Umbilical Humana , Extractos Vegetales/farmacología
16.
Molecules ; 29(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38257275

RESUMEN

BACKGROUND: Centella asiatica (CA) has been used to address cancer for centuries in traditional Chinese medicine (TCM). Previous studies demonstrated its anti-angiogenesis efficacy, but the underlying mechanism of its action remains to be further clarified. This study aims to investigate the underlying mechanisms of CA and its triterpenes in anti-angiogenesis for cancer therapeutics through network pharmacology and experimental validation. METHODS: Cytoscape was used to construct a network of compound-disease targets and protein-protein interactions (PPIs) from which core targets were identified. GO and KEGG analyses were performed using Metascape, and the AutoDock-Vina program was used to realize molecular docking for further verification. Then, VEGF165 was employed to establish an induced angiogenesis model. The anti-angiogenic effects of CA were evaluated through assays measuring cell proliferation, migration, and tubular structure formation. RESULTS: Twenty-five active ingredients in CA had potential targets for anti-angiogenesis including madecassoside, asiaticoside, madecassic acid, asiatic acid, and asiaticoside B. In total, 138 potential targets for CA were identified, with 19 core targets, including STAT3, SRC, MAPK1, and AKT1. A KEGG analysis showed that CA is implicated in cancer-related pathways, specifically PD-1 and AGE-RAGE. Molecular docking verified that the active components of CA have good binding energy with the first four important targets of angiogenesis. In experimental validation, the extracts and triterpenes of CA improved VEGF165-induced angiogenesis by reducing the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs). CONCLUSIONS: Our results initially demonstrate the effective components and great anti-angiogenic activity of CA. Evidence of the satisfactory anti-angiogenic action of the extracts and triterpenes from CA was verified, suggesting CA's significant potential as a prospective agent for the therapy of cancer.


Asunto(s)
Centella , Neoplasias , Triterpenos , Humanos , Farmacología en Red , Simulación del Acoplamiento Molecular , Estudios Prospectivos , Triterpenos/farmacología , Células Endoteliales de la Vena Umbilical Humana
17.
Fitoterapia ; 172: 105753, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992780

RESUMEN

Alpinia zerumbet is a food flavor additive and a traditional medicine herb around the world. Several studies have reported that A. zerumbet has excellent effects on a variety of cardiovascular diseases, but its potential hypertensive applications, and pharmacokinetic features of main active substances have not been fully investigated. The mechanism of anti-hypertension with ethyl acetate extracts of A. zerumbet fruits (AZEAE) was evaluated by L-NNA-induced hypertensive rats and L-NAME-injured human umbilical vein endothelial cells (HUVECs). Blood pressure, echocardiographic cardiac index and H&E staining were used to preliminary evaluate the antihypertensive effect of AZEAE, the levels of TNF-α, IL-6, and IL-1ß were evaluated by ELISA, and the proteins expression of IL-1ß, IL-18, AGTR1, VCAM, iNOS, EDN1 and eNOS were also evaluated. In addition, isolation, identification, and activity screening of bioactive compounds were carried ou. Next, pharmacokinetics and tissues distribution of dihydro-5,6-dehydrokavain (DDK) in vivo were measured, and preliminary absorption mechanism was conducted with Caco-2 cell monolayers. AZEAE remarkably enhanced the state of hypertensive rats. Twelve compounds were isolated and identified, and five compounds were isolated from this plant for the first time. The isolated compounds also exhibited good resistance against injury of HUVECs. Moreover, pharmacokinetics and Caco-2 cell monolayers demonstrated AZEAE had better absorption capacity than DDK, and DDK exhibited differences in tissues distribution and gender difference. This study was the first to assess the potential hypertensive applications of A. zerumbet in vivo and vitro, and the first direct and concise study of the in vivo behavior of DDK and AZEAE.


Asunto(s)
Alpinia , Antihipertensivos , Ratas , Humanos , Animales , Antihipertensivos/farmacología , Células CACO-2 , Estructura Molecular , Células Endoteliales de la Vena Umbilical Humana , Extractos Vegetales/farmacología
18.
Adv Biol (Weinh) ; 8(3): e2300416, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38143273

RESUMEN

Cerebral infarction is one of the most common diseases for aged people. Compound Tongluo Decoction (CTLD), a classic traditional Chinese Medicine prescription, has been widely used in the treatment of ischemic cerebral infarction. Transient middle cerebral artery occlusion (tMCAO) rat model is established for the animal experiment and oxygen-glucose deprivation and reperfusion (OGD/R) human umbilical vein endothelial cells (HUVECs) model are established for the cell experiment. This also use Nrf2-/- rats to detect the role of nuclear factor erythroid 2-related factor 2 (Nrf2). Longa score, Evans blue staining, brain water content measurement, and histological observation are done. The levels of reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), and other ferroptosis-related components are detected respectively. In the vivo experiment, CTLD relieved ischemia-reperfusion (IR) injury symptoms and attenuated IR injury in brain tissues of tMCAO rats by relieving peroxidation injury in brain tissues and inhibiting ferroptosis in tMCAO rats. Moreover, CTLD reversed OGD/R-induced oxidative damage of endothelial cells via suppressing ferroptosis. After knocking out the Nrf2 gene, the protective effect of CTLD is sharply reduced. This study put forward that CTLD can inhibit ferroptosis in I/R-injured vascular endothelium by regulating Nrf2/ARE/SLC7A11 signaling to improve the relative symptoms of rats after cerebral I/R injury, thus providing a viable treatment option for cerebrovascular disease.


Asunto(s)
Lesiones Encefálicas , Medicamentos Herbarios Chinos , Ferroptosis , Daño por Reperfusión , Humanos , Animales , Ratas , Anciano , Factor 2 Relacionado con NF-E2/genética , Encéfalo , Isquemia , Reperfusión , Daño por Reperfusión/tratamiento farmacológico , Infarto Cerebral , Transducción de Señal , Células Endoteliales de la Vena Umbilical Humana , Sistema de Transporte de Aminoácidos y+
19.
J Ethnopharmacol ; 323: 117638, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38135237

RESUMEN

THE ETHNOPHARMACOLOGICAL SIGNIFICANCE: Diabetic chronic foot ulcers pose a significant therapeutic challenge as a result of the oxidative stress caused by hyperglycemia. Which impairs angiogenesis and delays wound healing, potentially leading to amputation. Gynura divaricata (L.) DC. (GD), a traditional Chinese herbal medicine with hypoglycemic effects, has been proposed as a potential therapeutic agent for diabetic wound healing. However, the underlying mechanisms of its effects remain unclear. AIM OF THE STUDY: In this study, we aimed to reveal the effect and potential mechanisms of GD on accelerating diabetic wound healing in vitro and in vivo. MATERIALS AND METHODS: The effects of GD on cell proliferation, apoptosis, reactive oxygen species (ROS) production, migration, mitochondrial membrane potential (MMP), and potential molecular mechanisms were investigated in high glucose (HG) stimulated human umbilical vein endothelial cells (HUVECs) using CCK-8, flow cytometry assay, wound healing assay, immunofluorescence, DCFH-DA staining, JC-1 staining, and Western blot. Full-thickness skin defects were created in STZ-induced diabetic rats, and wound healing rate was tracked by photographing them every day. HE staining, immunohistochemistry, and Western blot were employed to investigate the effect and molecular mechanism of GD on wound healing in diabetic rats. RESULTS: GD significantly improved HUVEC survival, decreased apoptosis, lowered ROS production, restored MMP, improved migration ability, and raised VEGF expression. The use of Nrf2-siRNA completely abrogated these effects. Topical application of GD promoted angiogenesis and granulation tissue growth, resulting in faster healing of diabetic wounds. The expression of VEGF, CD31, and VEGFR was elevated in the skin tissue of diabetic rats after GD treatment, which upregulated HO-1, NQO-1, and Bcl-2 expression while downregulating Bax expression via activation of the Nrf2 signaling pathway. CONCLUSION: The findings of this study indicate that GD has the potential to serve as a viable alternative treatment for diabetic wounds. This potential arises from its ability to mitigate the negative effects of oxidative stress on angiogenesis, which is regulated by the Nrf2 signaling pathway. The results of our study offer valuable insights into the therapeutic efficacy of GD in the treatment of diabetic wounds, emphasizing the significance of directing interventions towards the Nrf2 signaling pathway to mitigate oxidative stress and facilitate the process of angiogenesis.


Asunto(s)
Diabetes Mellitus Experimental , Pie Diabético , Ratas , Humanos , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Diabetes Mellitus Experimental/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cicatrización de Heridas , Células Endoteliales de la Vena Umbilical Humana , Transducción de Señal
20.
J Ethnopharmacol ; 323: 117669, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38159828

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Thrombus generation is one of the leading causes of death in human, and vascular endothelial dysfunction is a major contributor to thrombosis. Pheretima guillemi (Michaelsen), a traditional medicinal animal known as "Dilong", has been utilized to cure thrombotic disorders for many years. DPf3, a group of functional proteins extracted from P. guillemi, has been characterized and identified to possess antithrombotic bioactivity via in vitro and ex vivo experiments. AIM OF THE STUDY: This study is aimed to investigate the vascular-protection activity and related mechanism of antithrombotic protein DPf3 purified from Pheretima guillelmi systematically. MATERIALS AND METHODS: The antithrombotic activity and vascular endothelium protection effect of DPf3 was explored in vivo using ponatinib-induced vascular endothelial injury zebrafish thrombus model. Then, (hi) ox-LDL-induced HUVECs was applied to investigate the protection mechanism of DPf3 against the injury of vascular endothelium. In addition, TMT-based proteomics analysis was used to study the biomarkers, biological processes and signal pathways involved in the antithrombotic and vascular protective effects of DPf3 holistically. RESULTS: DPf3 exerted robust in vivo antithrombosis and vascular endothelial protection ability. DPf3 was identified to prevent HUVECs from damage by reducing ROS production, and to reduce monocyte adhesion by decreasing the protein content of adhesion factor VCAM 1. DPf3 was also observed to weaken the migration ability of injured cells and inhibit abnormal angiogenesis. The mechanism of DPf3's antithrombotic and vascular protective activity was mainly related to the regulation of lipid metabolism, energy metabolism, complement and coagulation system, ECM receptor interaction, MAPK signal pathway, etc. CONCLUSIONS: This study demonstrates that DPf3 has strong antithrombotic and endothelial protective effects. The endothelial protective ability and related mechanisms of DPf3 provide a scientific reference for the traditional use of earthworms in the treatment of thrombosis.


Asunto(s)
Imidazoles , Oligoquetos , Piridazinas , Trombosis , Enfermedades Vasculares , Animales , Humanos , Pez Cebra , Células Endoteliales de la Vena Umbilical Humana , Oligoquetos/metabolismo , Proteómica , Fibrinolíticos/farmacología , Lipoproteínas LDL/metabolismo , Enfermedades Vasculares/metabolismo , Factores de Transcripción/metabolismo , Trombosis/inducido químicamente , Trombosis/tratamiento farmacológico , Trombosis/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA